GRADE 12

PHYSICAL SCIENCES: CONTROL TEST (P2) MARCH 2018

MARKS: 50

TIME: 1 hour

This question paper consists of 7 pages and 2 data sheets

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of FOUR questions. Answer ALL the questions in the ANSWER SHEET.
- 2. Start EACH question on a NEW page in the ANSWER SHEET
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Leave ONE line between two subquestions, for example between QUESTION 2.1 and QUESTION 2.2.
- 5. You may use a non-programmable calculator.
- 6. You may use appropriate mathematical instruments.
- 7. You are advised to use the attached DATA SHEETS.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your final numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions, et cetera where required.
- 11. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A-D) next to the question number (1.1-1.3) in the ANSWER SHEET, for example 1.4 E.

3

1.1 Which ONE of the following compounds will decolourise bromine water the fastest under normal conditions?

1.2 The melting points of four straight chain hydrocarbons (**A**, **B**, **C** and **D**) are shown in the table below.

Hydrocarbon	Melting point (°C)
A	-182,5
B	-95
С	28
D	-56,5

Which ONE of the above hydrocarbons has the strongest intermolecular forces?

A A

B B

C C

D D

(2)

(2)

- 1.3 The addition of hydrogen to an alkene is known as ...
 - A hydration.
 - B cracking.
 - C hydrogenation.
 - D hydrohalogenation.

Copyright reserved

Please turn over

QUESTION 2 (Start on a new page.)

The letters **A** to **H** in the table below represent eight organic compounds.

Use the information in the table (where applicable) to answer the questions that follow.

2.1	Write down the LETTER that represents a compound that:
	(A compound may be used more than once.)

2.1.1	Is a haloalkane	(1)
2.1.2	Has a hydroxyl group as functional group	(1)
2.1.3	Belongs to the same homologous series as ethanoic acid	(1)
2.1.4	Is a condensation polymer	(1)

			[17]												
	2.4.2	Write down the IUPAC name of the organic product formed	(2)												
	2.4.1	Write down the TYPE of reaction taking place	(1)												
2.4	Compo	und A reacts with pentan-1-ol in the presence of an acid catalyst													
	2.3.2	Write down the structural formula of a chain isomer of compound C .	(2)												
	2.3.1	Define the term positional isomer.	(2)												
2.3	Compound C has CHAIN and POSITIONAL isomers.														
	2.2.3	Structural formula of the <i>functional group</i> of compound D	(1)												
	2.2.2	IUPAC name of compound E	(2)												
	2.2.1	IUPAC name of compound B	(3)												
2.2	Write do	Write down the:													

QUESTION 3 (Start on a new page.)

The boiling points of compounds A, B and C were determined during a practical investigation and recorded in the table below

COMPOUND	CONDENSED STRUCTURAL FORMULA	BOILING POINT (°C)				
Α	CH₃OH	78				
В	CH ₃ CH ₂ CH ₂ OH	97				
С	CH ₃ Cł	39,6				

3.1 Define the term *boiling point*

(2)

- 3.2 Write down the type of intermolecular force that is responsible for the difference in the boiling points of compound **A** and **B** (1)
- 3.3 Explain the difference in the boiling points of compound **A** and **C** by referring to the TYPE and STRENGTH of the intermolecular forces (3)

5

3.4 Compound **C** is prepared under standard conditions (STP) by the reaction between methane and chlorine as shown by the equation:

$$CH_4(g) + C\ell_2(g) \rightarrow CH_3C\ell(g) + HC\ell$$

In the reaction, 12,8 g of CH_4 produces 0,035 kg $CH_3C\ell$. Calculate the percentage yield in the reaction

[11]

(5)

QUESTION 4 (Start on a new page.)

The flow diagram below shows the conversion of an alcohol into haloalkanes. **Compound Q is the major product**

 4.2 To which homologous series do compounds P and Q belong? (1) 4.3 What type of reaction takes place when compound P is converted to compounds X and Y as illustrated above? (1) 4.4 Use structural formulae to write a balanced equation for the preparation of compound Q as illustrated above. (4) 4.5 Write down the structural formula and the IUPAC name for compound X. (3) 4.6 A learner indicates that he can convert butan-2-ol directly into compound X. (1) 	4.1	Name the type of organic reaction of which dehydration is an example	(1)
 4.3 What type of reaction takes place when compound P is converted to compounds X and Y as illustrated above? (1) 4.4 Use structural formulae to write a balanced equation for the preparation of compound Q as illustrated above. (4) 4.5 Write down the structural formula and the IUPAC name for compound X. (3) 4.6 A learner indicates that he can convert butan-2-ol directly into compound X. (1) 	4.2	To which homologous series do compounds ${f P}$ and ${f Q}$ belong?	(1)
 4.4 Use structural formulae to write a balanced equation for the preparation of compound Q as illustrated above. (4) 4.5 Write down the structural formula and the IUPAC name for compound X. (3) 4.6 A learner indicates that he can convert butan-2-ol directly into compound X. (1) 	4.3	What type of reaction takes place when compound P is converted to compounds X and Y as illustrated above?	(1)
 4.5 Write down the structural formula and the IUPAC name for compound X. (3) 4.6 A learner indicates that he can convert butan-2-ol directly into compound X. Name the type of reaction that will take place during a direct conversion. (1) 	4.4	Use structural formulae to write a balanced equation for the preparation of compound ${f Q}$ as illustrated above.	(4)
4.6 A learner indicates that he can convert butan-2-ol directly into compound X . Name the type of reaction that will take place during a direct conversion. (1)	4.5	Write down the structural formula and the IUPAC name for compound ${f X}$.	(3)
	4.6	A learner indicates that he can convert butan-2-ol directly into compound X . Name the type of reaction that will take place during a direct conversion.	(1)

Petroleum companies use an elimination reaction to break longer hydrocarbons into shorter, more useable hydrocarbons.

An example of such a reaction is given:

 $C_{10}H_{22} \xrightarrow{\text{Heat/catalist}} C_8H_{18} + \text{compound } R$

(1)
(1)
(3)
[16]

GRAND TOTAL= 50 marks

"You are not a failure if you don't make it. You're a success because you tried" (Susan Jeffers) GOOD LUCK!!! GOOD LUCK!!! GOOD LUCK!!!

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p°	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	Vm	22,4 dm ³ ·mol⁻¹
Standard temperature Standaardtemperatuur	Τ°	273 K
Charge on electron Lading op elektron	e	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

TABLE 3: THE PERIODIC TABLE OF ELEMENTS

	1		2		3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	(I)		(II)								Atomior	umbor				(111)	(IV)	(V)	(VI)	(VII)	(VIII)
	1	1			KEY/SLEUTEL Atoomgetal											2					
5	н									•	710011	yetai									He
1	1										*										4
	3	-	4	1	Electronegativity													10			
o.	Ťi	ιų.	Re					Elektro	onegat	iwiteit	ုင္ Cu		mbool			9. R	10 C	9. N	1º 0	9. F	Ne
-	7	-	0						megui		63,	5				N 11	N 12	2 14	- 16	4 10	20
\vdash	- 11	-	12	+							└ - ╋					13	14	14	16	17	18
6	No	2	12						Ann	rovimat	ا relativ	e atomi	c mass			0 00	· · · ·	- 6	0 0	° ~	10 A ==
o	Na	-	mg						Ben	aderde	relatiew	e atoom	massa			- AC	- 31	N .	N 3	m 60	AI
\vdash	23	-	24		24	-	22	22		200100		27	200	- 20	20	21	28	31	32	30,0	40
_	19		20	6	21	6		23 10 11		20	20 m =	m 21	28	29	9 T	31 00 00	- 32 	33	34	30	30
õ	ĸ	÷.	Ca	÷	SC	F	11	₽ V	l≑ CI	r∣≇mn	li ⊋ Fe	₽ Co	₽ NI	₽ Cu	l≑ Zn	₽ Ga	₽ Ge	a AS	a Se	ລັ Br	Kr
	39		40	L	45		48	51	52	55	56	59	59	63,5	65	70	73	75	79	80	84
	37		38		39		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
8	Rb	2	Sr	Ę.	Y	2	Zr	Nb	₽ M ¢	o ₽ Tc	្តរដ្ឋ Ru	੍ਹੜ Rh	୍ଲ Pd	🛱 Ag	🔁 Cd	🖓 In	🛱 Sn	₽ Sb	¦⊼ Te	1 5	Xe
	86		88		89		91	92	96	; _	101	103	106	108	112	115	119	122	128	127	131
	55		56		57		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
5	Cs	6.0	Ba		La	19	Hf	Ta	W	l Re	Os	l Ir	Pt	Au	Hg	ST ≑	₽ Pb	😤 Bi	୍କ Po	୍ଜ At	Rn
 	133	- 	137		139	1	179	181	184	4 186	190	192	195	197	201	204	207	209			
	87		88	\square	89	\top			•	_ L .						• •	• •	• • •	• • •		· · · · ·
5	Fr	6	Ra		Ac			E0	50	60	64	62	62	64	CE	66	67	60	60	70	74
۲Ľ	•••	۲Ľ	226					58	59	00	0 1	62	63	64	60	00	6/	68	69		
-		-		-		-		Ce	Pr	Na	Pm	Sm	Eu	Gđ		Dy	НО	Er	Im	D YD	LU
								140	141	144		150	152	157	159	163	165	167	169	173	175
								90	91	92	93	94	95	96	97	98	99	100	101	102	103
								Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232		238	· ·										